
two Complex steam-water flows occur in a pot of 
boiling water just as they do in a pressurized- 

s . L" phase water reactor during a loss-of- 
coolant accident. Successful methods 

flow for analyzing these two-phase flows were 
first developed at Los Alamos National Laboratory. 
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any natural and manmade situations provide ex- 
amples of two-phase flow-bubbles rising in a 
carbonated drink, raindrops falling through the air, 

gasoline and air reacting in an automobile engine, water and 
steam circulating through a nuclear reactor. Common to all 
two-phase flows is the existence of discernible interfaces, or 
boundaries, that separate one phase from the other. Whether 
the flow involves two immiscible liquids, a liquid and a solid, a 
liquid and a vapor, or a solid and a vapor, the interfacial 
topology constantly changes as the phases interact, exchang- 
ing energy, momentum, and often mass. These interactions and 
changes in interfacial topology are the most W~cult  aspect of 
two-phase flow to model. Although little progress has been 
made in describing the detailed dynamics from first principles, 
macroscopic properties of two-phase flows can be determined 
satisfactorily from approximate models. Such models are 
essential for the safe and economic operation of a host of 
commercial systems-power generation, heating and cooling, 
material processing, and transport systems, to name a few. 

Here we focus attention on the steam-water flows that may 
occur during transients in pressurized-water reactors, but the 
methods presented are applicable to liquid-solid and liquid- 
liquid flows as well. The Laboratory has been a leader in the 
development of sophisticated numerical techniques for analysis 
of multiphase flows and in the construction of computer codes 
based on these techniques. Applications of these codes are 
described in the four articles that follow. In this article, we 
discuss the basic principles incorporated in models for Uquid- 
vapor flows and illustrate the numerical techniques for solving 
the resulting equations. The level of sophistication described 
here is typical of that in TRAC, the large systems code 
developed, at the request of the Nuclear Regulatory Com- 
mission, by Los Alamos for light-water reactor safety analysis. 

Flow Regimes 

Two-phase flows exhibit various flow regimes, or flow 
patterns, depending on the relative concentration of the two 
phases and the flow rate. A simple but generally adequate set 
of descriptive phrases for most of the important liquid-vapor 
flow regimes consists of bubble flow, slug flow, chum flow, 
annular flow, and droplet flow, 

Bubble flow describes the flow of distinct, roughly spherical 
vapor regions surrounded by continuous liquid. The bubble 
diameter is generally considerably smaller than that of the 
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Fig. 1. Photograph of slug^w. 

container through which they flow. Bubble flow usually occurs 
at low vapor concentrations. 

If the vapor and liquid are flowing through a pipe, bubbles 
may coalesce into long vapor regions that have almost the 
same diameter as the pipe (Fig. 1). This is called slug flow. 

At moderate to high flow velocities and roughly equal 



concentrations of vapor and liquid, the flow pattern is often 
very irregular and chaotic. If the flow contains no distinct 
entities with spherical or, in a pipe, cylindrical symmetry, it is 
said to be chum flow. 

At high vapor concentration, the liquid may exist as a thin 
film wetting the pipe wall (annular flow) or as small, roughly 
spherical droplets in the vapor stream (droplet flow). If both a 
thin film and droplets exist, the flow is described as annulw. 
droplet flow. 

All these regimes ean be exhibited by liquid flowing 
vertically upward through a heated tube (Fig. 2). ~ a c h  regime 
requires somewhat different modeling because the dominant 
interactions between liquid and vapor change their character 
from one regime to another. 

Everyone has observed some of these flow patterns in the 
home. For example, as a pot of water is heated, small bubbles 
form on the hot bottom surface. These grow, detach, and rise 
to the surface, driven by their buoyancy and by liquid 
convection. When the bubbles reach the surface, they break 
and send tiny droplets upward in a visible mist. Interaction of 
the small waves resulting from the bubbles' collapse produces 
larger droplets. Initially, these accelerate upward from the 
surface but are too large to be carried very far by the rising 
steam, so they fall and splash back onto the liquid. Even this 
mundane situation is chaotic and complicated, and its sim- 
ulation presents interesting problems. 

Anyone who has attempted to drink liquid from an inverted 
pop bottle has experienced slug flow. The liquid exits as a 
series of chunks rather than a smooth stream, and the air that 
replaces the liquid enters the bottle as a series of vapor slugs. 
The same general formulation that describes bubbles rising in a 
pot can be used to describe the flow of liquid from the inverted 
bottle or the complex steam-water flows in a pressurized-water 
reactor. 

Steam-Water Flows in Pressurized-Water Reactors 

During normal operation of a pressurized-water reactor, 
water in the primary cooling system is at a pressure of about 
150 bars (about 150 atmospheres) and a temperature of about 
590 kelvin (about 600Â°F) The water, circulated by large 
centrifugal pumps, flows into the reactor vessel, down an 
annulus, up through the core where it is heated by the fuel 
rods, into an upper plenum, and out of the vessel. The hot 

Fig. 2. Flow regimes eXnibiteil by wcaer flowing vertical& 
upward through a heated tube at moderate to high flow 
velocities. 
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water, still liquid, flows from the reactor vessel through a heat 
exchanger, called the steam generator, where the energy is 
removed from the primary system. The cooler liquid returns to 
the pump and the process continues. The water on the 
secondary side of the steam generator is at a lower pressure 
and quickly boils. The steam powers a turbine that drives a 
generator, and is then recovered from the turbine, condensed in 
another heat exchanger, and returned to the secondary system 
pumps. 

Now suppose that a pipe breaks in the primary system. The 
pressure drops and the superheated water flashes to steam. As 
the pressure drops further, emergency core-cooling systems are 
activated to prevent overheating of the core. These systems 
inject cold water into the pipes connected to the reactor vessel. 
Both vaporization and condensation may occur simultane- 
ously in different reigons of the primary system and produce 
complex, turbulent steam-water flows. To follow the evolution 
of these flows and predict their effectiveness in cooling the core 
requires detailed models of the two-phase flow. 

The Two-Fluid Model 

Analysis of two-phase flow begins with the most general 
principles governing the behavior of all matter, namely, 
conservation of mass, momentum, and energy. These prin- 
ciples can be expressed mathematically at every point in space 
and time by local, instantaneous field equations. However, 
exact solution of these equations is almost impossible and very 
expensive, requiring the tracking of many convoluted liquid- 
vapor interfaces that change continuously in time. Instead, the 
usual procedure is to average the local, instantaneous equa- 
tions in either time or space, or both. Although we lose 
information in the process, the resulting equations yield 
accurate solutions to a wide variety of practical problems so 
long as the averaged variables bear some resemblance to the 
actual situation, that is, so long as the flow is not too chaotic. 

During the averaging, the two phases may be treated 
together to obtain averaged variables for a two-phase mixture; 
alternatively, treating each phase separately, we obtain aver- 
aged variables for both phases. The latter procedure yields the 
two-fluid model, which is a bit more general and useful. (The 
mixture model can be derived from the two-fluid model.) 

A usual two-fluid model consists of six field equations: 
averaged mass, momentum, and energy equations for the 

liquid and another set of three for the vapor. For example, 
integrating across the cross section of our heated tube (Fig. 2) 
at some particular time, through regions with liquid and 
regions with vapor, we obtain area-averaged conservation 
equations for the liquid and the vapor. Or, integration over a 
small volume element provides volume-averaged equations. 
We could also integrate over a period of time at some 
particular location in the tube to obtain time-averaged con- 
servation equations. Finally, additional variables are in- 
troduced into the averaged conservation equations, namely, 
the volume (or area) fraction of the vapor a, and of the liquid 
a, for a given region. Because the flowing material is either 
vapor or liquid, a, and a, are not independent. Rather 
a, + a, = 1. 

Other procedures (for example, Boltzmann statistical 
averaging) may be followed to obtain usable field equations, 
but these are the most common. Fortunately, all the averaging 
techniques produce effectively identical sets of equations, at 
least one-dimensional equations. 

The field equations are usually derived by assuming that the 
interface separating the phases has zero thickness and zero 
mass, and hence cannot store momentum or kinetic and 
thermal energy. To complete the field equations, mass, 
momentum, and energy fluxes of one phase must be connected 
across the interface to the corresponding fluxes of the other 
phase. With suitable simplifications, these connections are 
usually effected with "jump conditions." 

We will illustrate application of the two-fluid model to 
vapor-liquid flow with the field equations for conservation of 
mass and the appropriate jump condition. For flow of a single 
phase in the absence of sources and sinks, conservation of 
mass is expressed as 

where p is the density of the fluid and ?is its velocity. For the 
case at hand, we need two mass-conservation equations, one 
for each phase, and must include the possibility of vaporization 
and condensation at the rates I?, and r,, respectively. We 
obtain the following mass-balance equations for vapor and 
liquid. (Averaging symbols have been omitted for simplicity.) 
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and 

Conservation of mass implies that the jump condition at the 
interface is 

That is, production of vapor at the interface depletes the liquid 
phase by an equal amount. 

The field equations based on conservation of energy and 
momentum, although similar, are more complicated and are 
often formulated with additional simplifying assumptions. For 
example, we often ignore turbulent stresses in the momentum 
equation and turbulent work terms in the energy equation. 

Constitutive Relations 

The field equations are an expression only of conservation 
principles; they describe neither the thermodynamic properties 
of the materials involved nor the interactions between the 
phases and between each phase and the medium in which the 
flow occurs. Completion of the analysis requires "constitutive 
relations" that describe these properties and interactions. 

For the steam-water flows that are of interest here, the 
constitutive relations that are the most difficult to specify 
properly are those describing the interactions between the 
phases. Consider, for example, the averaged equation for 
conservation of mass of the vapor phase (Eq. 1). Expressed in 
words, this equation simply states that, within a volume 
element, the temporal change in the vapor mass equals the rate 
of vapor production minus the exiting vapor flux. 

However, this equation cannot be applied to a real problem 
until we have a constitutive relation that specifies the rate of 
vapor production. 

A number of basic models have been used to determine this 
variable. Early vapor-liquid studies were often based on a 
thermodynamic equilibrium model. This model includes the 
assumption that when two phases coexist, both must be at the 
saturation temperature. Thermodynamic equilibrium is main- 
tained in this model by balancing pressure changes with 
sufficient vaporization or condensation. 

Although adequate to describe many situations, this model 

fails when the effects of thermodynamic disequilibrium are 
important. Such is the case, for example, in a reactor core 
during accident conditions. Droplets of water at temperatures 
close to saturation may be entrained by steam at a temperature 
much higher than saturation. To evaluate properly the cooling 
effects of the steam-droplet mixture on the fuel rods, the 
temperature of the droplets and of the steam must be 
considered separately. 

INTERFACIAL MASS AND ENERGY EXCHANGE. In our 
studies of transient reactor behavior, we use a simple non- 
equilibrium phase-change model based on a thermal-energy 
jump condition at the vapor-liquid interface. At a region in 
space where both phases exist, we specify an energy balance 
between the phases at the interface (Fig. 3). Because we 
assume that the interface cannot store thermal energy, the net 
energy transferred to the interface by vapor and liquid must be 
used up by vaporization (or condensation). Thus the rate of 
vapor production rl is given by 

where q,  and q, are the rates of heat transfer to the interface 

Fig. 3. Mass and thermal enemy are exchanged between 
vapor and liquid through a massless interface. Because the 
interface cannot store thermal energy, the net energy trans- 

ferred to the interface, ql + q2, must result in vaporization or 
condensation. 

W S  ALAMOS SCIENCE 



two-phase flow 

from the vapor and the liquid, respectively, and AH is the 
enthalpy difference between the phases. If the interface is 
assumed to be at the local saturation temperature Teat, then 
AH = L, the heat of vaporization of the material at the local 
pressure. 

Expressions for the interfacial heat transfers are obtained by 
assuming that each phase has an average temperature, denoted 
by Tl and T,, and by applying Newton's law of cooling. 

and 

The proportionality constants hi and h2 are the heat-transfer 
coefficients between the interface and vapor and between the 
interface and liquid, respectively, and A is the interfacial area. 
Substituting these expressions into Eq. 3, we obtain Fi as a 
function of hl, ha and A. 

The temperatures Ti and T, can be calculated from the 
' coupled field equations, and may be regarded as known. 
However, the interfacial heat-transfer coefficients and the 
interfacial area depend on the interfacial topology, which is not 
specified in our averaged two-fluid model. 
' We usually obtain values for hi, hi, and A by first 

determining the local flow regime from a steady-state flow- 
regime map. Such a map relates observed flow regimes to local 
flow conditions, that is, to volume fraction of one or the other 
phase and to flow velocities of both phases. (These variables 
are available from the field equations.) Figure 4 shows a 
particularly simple flow-regime map based on observations of 
upward air-water flow in a vertical pipe. Having determined 
the local flow regime, we use empirical correlations ap- 
propriate to that regime to obtain values for h,, h,, and A. 
~lthough this technique cannot be fully justified from first 
principles, it is relatively simple and often supplies reasonable 
answers to complex problems. 

Sometimes further information may be needed to use the 
customary empirical correlations for hi, h2, and A. For 
example, the flow-regime map may specify droplet flow, but a 
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Fig. 4. Observed flow-regime map for upward air-water flow 
in a vertical pipe. The flow regime is independent of /low 
velocity and depends only on the vapor fraction. As the vapor 
fraction increases (and the number and size of the bubbles 
increase), collisions between the bubbks become more fre- 
quent, and they coalesce into slugs. At higher vapor fraction, 
vapor slugs cannot exist, and chum flow sets in. Finally, an 
annular-droplet flow occurs at very high vapor fraction. 

mean droplet size is required. A local approximation based on 
a Weber number criterion is often used to specify an average 
droplet diameter d, This criterion is an expression of the idea 
that, for droplet flow to exist, disruptive forces (forces due to 
relative motion of droplets and vapor that tend to break up the 
droplets) and restoring forces (due to surface tension 0) must 
be in a certain ratio. Expressed mathematically, 

where dmax is the maximum droplet size and We, the Weber 
number, is some constant. We use d Ã 0.5 dmw 
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The Weber number criterion does not take into account the 
existence of a spectrum of droplet sizes, velocities, and cooling 
rates; in addition, it sometimes predicts nonphysical results. 
For example, consider subsonic droplet flow in a convergent- 
divergent nozzle. Applied to large drops as they enter the 
convergent section, the Weber number criterion gives a 
reasonably accurate estimate of their largest size as they break 
UP. 

However, further downstream in the region of slower flow 
the same criterion predicts coalescence that does not in fact 
occur (Fig. 5). 

Simplifications similar to those delineated above are in- 
cluded in most current computer codes. Fortunately, for many 
problems of interest, accuracy of the interfacial terms need 
only be sufficient to provide reasonable overall results. How- 
ever, work is progressing on replacing some of these approx- 
imations with additional differential equations for a character- 
istic length (or area) field to be convected around with the flow. 
These equations will provide a better history of droplet 
evolution and more realistic estimates of the interfacial interac- 
tions. 

INTERFACIAL MOMENTUM EXCHANGE. We have dis- 
cussed in some detail the development of constitutive relations 
that describe the interfacial exchange of mass (by the mecha- 
nism of phase change) and its relationship to the interfacial 
exchange of energy. Another important interfacial interaction 
that must be taken into account is exchange of momentum 
between the two phases. This exchange arises because, in 
general, the two phases do not travel at the same velocity. 
(Witness the upward flow of steam bubbles in a pot of heated 
water or of carbon dioxide bubbles in a newly opened pop 
bottle.) A full description of the interfacial momentum transfer 
requires consideration of various phenomena, including, 
among others, "added-mass" effects, Bassett forces, steady- 
state drag forces, and phase-change thrust effects. However, 
the customary procedure is to consider only the last two, 
which are the local forces that dominate most problems. Both 
are dependent on the local flow regime, and again, flow-regime 
maps and empirical correlations are invoked. 

A source of error in most calculations should be pointed 
out. Averaging operators, which have not here been indicated 
explicitly, can be important in formulating models because the 
averaged equations include many quantities that are averages 
of products. But in most calculations, it is assumed, for 
example, that /pv2) = ( p)(v)(v), where ( and ) denote a spatial 

Flow Direction 

I 
Flow Direction 

Fig. 5. A comparison of predicted and actual subsonic droplet 
flow through a convergent-divergent nozzle. (a) The Weber 
number criterion pred1Cts that large drops break up into small 
drops in the convergent section and coalesce into large drops in 
the divergent section, (b) In reality, the small drops do not 
coalesce in the divergent section. 

average. This assumption is strictly valid only if the density 
and velocity are constant across the region where the averag- 
ing is effected. (Such errors can be corrected for if information 
about the density and velocity profiles is available.) We raise 
the point here because the error so introduced is larger for 
momentum fluxes (pv2 terms) than for mass fluxes (pv terms). 

INTERACTIONS WITH CONTAINING MEDIUM. The in- 
teractions between each phase and the medium through which 
they flow (such as pipe walls and structures within a reactor 
vessel) are another set of necessary constitutive relations. Wall 
shear and wall heat transfer must be modeled with some 
accuracy to obtain realistic analyses of transient reactor 
response. Particular attention must be paid to modeling the 
extreme variation (by orders of magnitude) of heat transfer 
from the fuel rods as local flow conditions change. Correlating 
procedures using Newton's law of cooling are customary, but 
the resulting functions that specify the heat-transfer coeffi- 
cients to the liquid and vapor are complicated and not always 
well supported by experimental data. 

Numerical Solution Techniques 

Even the simplified models for two-phase flow described 
above are fairly complicated. The two-fluid model includes six 
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Fig. 6. To apply the method of finite dzrmences to one- 
dimensionaljlow, the x-axis is dividkd into equal intervals with 

coupled partial differential equations and numerous 
thermodynamic and constitutive equations. Solutions for spe- 
cific problems are obtained by using numerical techniques and 
high-speed computers. The Laboratory's greatest contribution 
to analysis of two-phase flow is the development of numerical 
solution techniques and large-scale computer codes. Francis 
H. Harlow and his associates were among the fnst to compute 
these flows successfully with a two-fluid model. 

The partial dserential equations that represent the con- 
servation laws cannot be solved directly with a (digital) 
computer. Instead, these equations must be approximated by 
algebraic equations. We will use the method of finite dif- 
ferences to solve a set of equations describing the flow of a 
single phase through a pipe. We assume that the flow can be 
described in suficient detail in one dimension? along the pipe 
axis. The set consists of equations for conservation of mass 
and momentum and a thermodynamic equation of state. 

and 

where p is the microscopic density, v is the velocity, and p(P) is 
some (known) function of the pressure P. 

For convenience, we divide the distance along the x-axis into 
equal finite intervals, or cells? of length Ax and denote the 
midpoints by xi. The thermodynamic variables p and P are 
defined at the cell midpoints and the mass flux pv at the cell 
edges (Fig. 6). We also divide the time coordinate into equal 
intervals of duration At with endpoints denoted by 5 Super- 

mi&oints denoted by xt The variables p, P,  and pv are wried 
at the indicated locations. 

scripts and subscripts on the dependent variables indicate? 
respectively, time and location. 

The temporal term of our mass-conservation equation (Eq. 
5) may be approximated by 

and the spatial term by 

(Note that we have not yet specified the times for the spatial 
term. We shall address this issue below.) Our approximation 
for Eq. 5 in the cell bounded by and xi+ll2 is thus given by 

We could approximate our momentum-conservation equa- 
tion (Eq. 6) over the same cell, obtaining 

We choose instead to approximate it over the cell bounded by 
xi and xi+l , and obtain 

(Again, we have not yet specified the times for the spatial 
terms.) 

There are two reasons for choosing to "stagger" the mass 
and momentum cells. First, Eq. 9 specifies pressures at the cell 
edges rather than at the cell centers where we have defined 
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them. Solving this problem involves use of pressures spanning 
three cells (Pi+l and Pi-l ), In contrast, the pressures specified in 
Eq. 10 span only two cells, a situation that greatly improves 
the solvability of the system of linear equations (improves the 
diagonal dominance of the resulting matrices). Second, notice 
that mass flux is the dependent variable common to Eq. 8 and 
Eqs. 9 or 10. Both Eq. 8 and Eq. 10 specify this variable at cell 
edges, whereas Eq. 9 specfies it at cell centers. Therefore, 
mass flux values from Eq. 10 can be substituted directly into 
Eq. 8, a convenient situation. 

The numerical analyst must select a numerical technique 
and a difference scheme, such as that represented by Eqs. 8 
and 10, that exhibit accuracy and stability. The term accuracy 
means that, as At and Ax are made smaller and smaller, the 
numerical results are better and better approximations of the 
exact solution to the original differential equations. Stability 
means that the results show no unbounded growth of errors. 
Generally, stability depends on the choice of At and Ax. 

We can decide how to time-dfierence the spatial terms in 
Eqs. 8 and 10 on the basis of stability criteria. Let us assume 
for the moment that we are using what is known as a fully 
explicit difference scheme, that is, all the spatial terms are 
specified at time 5. It can be shown that our technique is then 
stable only if everywhere 

where C is the local sound speed ( a P / a ~ ) " ~  at constant 
entropy. We can develop a feel for why this is so by examining 
the consequences of violating the criterion. Then, for small 
velocities (v < C), At > &/C. For example, we will set At 
equal to 2Ax/C. During a time interval of this duration, a 
smd ,  narrow pressure pulse at xi will travel a distance 2Ax 
(the wave speed of the pulse is C) to xi+2. At the end of the time 
interval, at tj+l , the mass flux at xi+3l2, and hence certainly at 
xi+ll2, should be affected. But Eq. 10, containing pressure 
values at tj, does not reflect the influence of the pulse. In facty 
calculated results based on time intervals violating the criterion 
of Eq. 11 will quickly show exponential growth of errors and 
become meaningless. 

Because the sound speed is high for liquids, the stability 
criterion of Eq. 11 restricts us to quite short time intervals. We 
prefer to use instead a semi-implicit technique: in the momen- 
tum-conservation eqdation, to specify the pressures at tj+l and 

the momentum fluxes at tj, and, in the mass-conservation 
equation, to specify the mass fluxes at 5+1 . Through similar 
arguments based on mass transport, it can be shown that this 
semi-implicit technique will be stable only if vAt/Ax 
< 1, a much less restrictive criterion. 

Applying the semi-implicit difference scheme to Eqs. 8 and 
10 and rearranging, we arrive at the following system of 
equations. 

and 

(PV) gI2= (pv) 

A problem remains: we need values for the momentum 
fluxes. First, note that momentum fluxes can be calculated 
from mass fluxesy that is, pv2 = (p~)~ /p .  Then, we must decide 
what mass fluxes to use. Stability considerations demand that 
we use "upwind" mass fluxes. That is, if v i+l is positive, we 
calculate (pv2) i+lfrom the mass flux at x i+l12. If v i+lis negative, 
the mass flux at x i+312is used. 

An equation for p 7 is obtained by substituting expressions 
for (pv)$t12 and (pv)Cil2 (both provided by versions of 
Eq. 13 at xi+ll2 and xi-llJ into Eq. 12. The reader so 
enthusiastic as to attempt the algebra will generate an equation 
for p F 1  in terms of known quantities (quantities at tj) and the 
pressures (P):;, pF1, and (P)::. At this point, we linearize 
our equation of state. 

where dp/dP is obtained from Eq. 7. Combining Eq. 14 with 
our fmal equation for p F 1  results in an equation for pressure 
with a tridiagonal band structure in Pi-l, P i ,  and Pi+l . 
Solution of this equation provides us with pressures at %+1 and, 
hence, with densities and mass fluxes from the equation of 
state and Eq. 13, respectively. We have now advanced all 
variables from t to t j+l. The process continues until the time 
boundary is reached. 

Our sample problem is an example of an initial-value and a 
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boundary-value problem. We must therefore somehow be 
provided with initial values of py P, and pv for all x and with 
boundary values for all t. For some numerical techniques, 
inclusion of boundary conditions can be a tricky matter; the 
requirement that we achieve closure for the linear equations 
often implies the need for more boundary conditions than are 
demanded by the original dflerential equations. Inclusion of 
boundary conditions in the finite-difference technique il- 
lustrated here is generally straightforward. SufEcient boundary 
conditions for single-phase flow through a pipe consist of the 
pressures external to the pipe at both ends and the density on 
the inlet side. 

With considerably more tedious detaily the method of fmite 
differences can be applied to the more complicated equations 
describing two-phase flow. Although it may seem nearly 
impossibley large computer codes that accurately portray all 
the complexities of a reactor transient can be constructed with 
this numerical technique and the models described above. 
TRAC is an outstanding example of such a code. 

The challenges in producing a code like TRACY which 
currently contains about 40,000 statements, are numerous; 
careful assessment of the models and methods is necessary. 
The resultsy howevery are a tool for describing the complicated 
two-phase flows in reactors and for providing better estimates 
of reactor safety. 
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